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The Kink of Cellular Automaton Rule 18 
Performs a Random Walk 

Kari EIoranta ~ and Esa N u m m e l i n  2 
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We give an exact characterization of the movement  of a single kink in the 
elementary cellular au tomaton  Rule 18. It is a random walk with independent 
increments as well as independent delay times. Its statistical parameters are 
computed to confirm the earlier simulation results by Grassberger. 
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INTRODUCTION 

It is quite common in cellular automata that several invariant configura- 
tions or phases can be identified. In one dimension the boundaries between 
these are called kinks or dislocations. In some cases they move in a regular 
fashion like signals carrying information, whereas in other cases their 
motion is highly erratic, reflecting the randomness in the initial configura- 
tion. The latter situation has been studied empirically by Grassberger (1~ as 
a model for deterministic diffusion. The "canonical" case for chaotic kink 
motion seems to arise in the context of the elementary Rule 18. Under- 
standing this phenomenon would clarify the asymptotic behavior of the 
system as indicated by Lind. (3~ Moreover, it is likely that by utilizing block 
transformation equivalences many other one-dimensional cellular automata 
could then be analyzed analogously to Rule 18. In this note we make 
rigorous the idea of a single kink in Rule 18 performing a random walk 
and compute its statistical parameters. This confirms the earlier simulation- 
based estimates. 
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1. S E T U P  A N D  R E S U L T  

Let {0, 1} be the set of symbols and E =  {0, 1}z be the set of con- 
figurations. A one-dimensional elementary cellular automaton is a dynamical 
system on E defined by a blockmap on three neighboring symbols which 
commutes with the shift on E. The blockmap of Rule 18 is simply 001 ~ 1, 
100~--~ 1, while other triples map to zero. Here we follow the standard 
numbering of elementary cellular automata  (see, e.g., Wolfram(4)). Later 
the Rule 6 on binary doubles is also considered. In order to avoid possible 
confusion between these rules, we call them then 18/256 and 6/16 (there are 
16 and 256 elementary rules on binary doubles and triples, respectively). 

The image of a configuration t /=  { t / ( x ) , x~Z}  under the Rule 18 
is denoted by Tt/. A partial configuration is denoted by t / [ a , b ] =  
(q(a),..., t/(b)), a ~< b, a, b E Z. 

A configuration t/ contains a kink if t/[a, b] = (1, 0,..., 0, 1) for b - a  
odd. The middle of the kink (a + b)/2 belongs to Z + 1/2. 

Here is a simple illustration of the action of Rule 18 on a piece of 
configuration with a single kink in it: 

t/ �9 �9 0 0  1 0  1 _ 1 0  1 0  1 0  1 0  1 0  0 �9 
zt/ . . . .  1 0  0 0 0 0 0_0 0 0 0 0 0 1 . . . .  

rat/ . . . . .  1 0 0 0 0 0_0 0 0 0 0 1 . . . . .  (1) 

~Tt/ . . . . . . . . . .  1_1 . . . . . . . . . .  

The middle of the kink has been indicated with an underbar. Note that 
the middle point first jumps R - L  = 4 - 1  = 3 steps to the right, where 
R = 4 = the number of l 's to the right of the kink until two zeros and 
L = 1 = the same number  to the left. After this jump the middle stays put 
for a time = R + L + 2 = 7, after which it again jumps. 

Let N be the set of natural numbers and No the set of nonnegative 
integers. Define a subset of E by 

F =  {t/ I for some a, r / ( a -  2 j+  1) = t / (a+  2j) = 0 ,  V j6N}  

Then any t/~ F contains at most one kink. The set F is invariant under the 
Rule 18. 

Let e be the Bernoulli(I/2) distribution on each of the unspecified 
coordinates of F. It  is easy to see that the subset in F of those configura- 
tions that have a kink is of full measure. 

Suppose {ti, i~N0} are i.i.d, positive random variables. Then T i=  
to+  .-. + t i_~ ,  To=0 ,  is a renewal process on N o. Let I (n)=i  for T~< 
n < T~+ ~ be the counting process. Let Xo be a random variable on Z + 1/2 
and {Xi}~.>~l an i.i.d, sequence of Z-valued random variables that are 
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independent of X0. If {(Xi, ti), i t N o }  are independent pairs (but not 
necessarily within a pair), then S,, = Xo + ..- + X,(n) defines a (Z + 1/2)- 
valued random walk with i.i.d, delay times. 

Our result can now be stated. We use the notation X = d y  when 
random variables X and Y have the same distribution. 

T h e o r e m .  Suppose that r / e F  with a kink is distributed according 
to c~. If S, denotes the midpoint of the kink in ~nt/, then it is a random walk 
with i.i.d, delay times. In particular, the ith jump X~ = d R - L  and the 
holding time t~ =d R + L + 2, where R and L are geometrically distributed 
with parameter 1/2. The random walk has zero drift and squared variation 
asymptotically equal to n. 

Remark. By ref. 3, Bernoulli(i/2) is the only nontrivial invariant 
product measure for the Rule 18 on the configurations with every other 
entry zero. Hence if ~ is Bernoulli(p~) distributed with p~ :~ 0, 1/2, 1 on F, 
the movement of the kink is a nonstationary stochastic process (a random 
walk in a temporally inhomogeneous medium). 

2. THE PROOF 

We first simplify the action of the rule on F to its essence. By adding 
a zero to the kink in t /e F, we obtain a configuration with at least every 
other entry zero. These (even- or odd-indexed zeros) are then removed. On 
the remaining configuration the rule is now 6/16 on binary doubles. This 
transformation is analogous to the linearization of Jen. (2/ Graphically: 

O 0  O1 1 0  1 1  
0 1 1 0 ~ ( ~ ' '  "~) 

The arrow points to the direction of time. 
A simple but important observation is that this ruletable has a spatial 

three-way symmetry, i.e., it is identical rule when time is changed to run to 
either of the directions indicated by the arrows in parentheses. 
Equivalently, the rule is permutive, i.e., fixing the value of any of the cells 
in the triplet defines a permutation. 

The Rule 6/16 is formulated as follows. Let E1/2 = {0, 1 }z+ 1/2 and E =  
Ew E1/2, where as before E =  {0, 1 }z. Then the cellular automaton map 
acts as f t / ( x ) = i  if q ( x - 1 / 2 ) r  1/2) and 0 otherwise. Hence 
f(E) = El~ 2 and f(EI/2)= E. We distribute the initial configuration r/ on E 
according to Bernoulli(I/2). It follows that for each even n, mr/ has also 
Bernoulli(I/2) distribution on E, whereas for odd n, mr/has Bernoulli(I/2) 
distribution on E~/2. Now any r/[a, b] = (1, 0,..., 0, 1)~ E can be designated 
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to be a kink with middle point at ( a +  b)/2. If b - a  >~ 2, its successor 
is ~/[a+ 1/2, b -1 /2 - ] .  If b - a =  1, then the kink jumps and its successor is 
qEc, d], where c=max{x<~a- 1/2 I gq(x) = 1} and d = m i n { x  ~> 
b + 1/2 I g~(x) = 1 }. 

We illustrate how the particular kink movement described in (1) 
happens under the transformed rule (again the underbar within the 1-block 
denotes the middle of the kink): 

r/ 
gq 

-~7r/ 

- . 0 1 1 1 1 1 1 1 0 .  
1 0 0 0 0 0 0 1  

. . . .  1 0 0 0 0 0 1 - .  

. . . . . .  1_1 . . . . . .  

(2) 

Now the kink first moves (R-L)~2= ( 4 - 1 ) / 2 = 3 / 2  steps to the right, 
where R = the number of l's to the right of the kink until first zero and 
L = t h e  same number on the left-hand side. As in the rule 18/256, the 
holding time is R + L + 2 = 7. 

From the construction it is now clear that the dynamical systems 
(F, v) and (E, g) when started from configurations with one kink are 
isomorphic. Hence in particular the movement of the kink is identical up 
to scaling. We shall again use the notation Xi and t i for the ith jump and 
holding time of the kink. 

The following is the core of the argument. 

L e m m a .  Let us consider the kink movement in the Rule 6/16, i.e., 
the system (/~, g) starting from a Bernoulli(I/2) distributed q ~ E. Suppose 
that at time n we have a kink of the form (1, 1) at S, in g'~t- Then the next 
Jump is X1~,)+1 =d(R-L) /2  and the next holding time is t/~n)+l =d 
R + L + 2 ,  where R, L ~ G e o m ( 1 / 2 )  are independent of each other and 
independent of the past of the walk. 

Proof. Suppose that S,, = x. It is clear that the history of the kink is 
confined to the backward cone with vertices at (x, n) and (x -+- (n + 1)/2, 0) 
(see Fig. 1). Equivalently, the past a-field ~ of the kink is completely 
determined by the configurations in the backward cone at (x,n). 
Moreover, ~ / [ x -  (n + 1)/2, x + (n + 1)/2] and its complement are inde- 
pendent. At step n ~ n + 1 the kink jumps [expands from a (1, 1) kink into 
a wider one]. Its right endpoint moves R + 1/2 steps to the right, where R 
is the number of ones to the right of the kink before the first zero (see 
Fig. 1, in which R = 3  and L = 5 ) .  Given ~ ,  by permutivity the value 
at rl(x+(n+3)/2 ) determines the value of every one of the cells 
~iq(x + (n - i + 3)/2), i = 0, 1,..., n. Since q(x + (n + 3)/2) is independent of 
~ ,  so is g~q(x + 3/2). This argument iterated implies R ~ Geom(1/2) and its 
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O ~ I ~ 1  0 
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Fig. 1 

independence of Y,,,. A symmetric argument yields the distribution of L, the 
number of ones to the left. The delay time is the height of the new triangle 
of zeros surrounded by ones, which equals to R + L + 2. | 

Proof of the Theorem. By the isomorphy of 6/16 and 18/256 on the 
special configurations it suffices to just consider the system (E,'~). The 
Lemma yields the i.i.d, increments and delay times. For Rule 18/256 the 
temporal increment is identical, whereas the spatial increment is double 
[see also illustrations (1) and (2)]. Obviously E(X1)= 0 hence the expected 
drift is 

E(S.- So)= E tI~=I X~) = E(X~) E(I(n)) =0 

by Wald's identity [l(n) is optional]. The expected squared increment and 
expected delay time are both readily computable from R and L and equal 
to 4. Since {(X 2, ti), i s  No} are mutually i.i.d, by the Renewal Theorem, we 
get that 

1E X --' =1 
n E(to) 

a s / , / - - +  cz). | 
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3. C O N C L U S I O N  

In the case of several  k inks  new p h e n o m e n a  appear .  Ne ighbo r ing  
kinks  annih i la te  each o ther  and  it is k n o w n  tha t  from an ini t ial  configura-  
t ion with finite suppor t  at  mos t  one k ink  survives after a finite time. (2~ 
However ,  the mechan i sm for the jo in t  m o t i o n  of even two kinks  seems 
compl i ca t ed  due to dependence.  I t  needs to be unde r s tood  well in o rde r  to 
conf i rm Lind ' s  conjectures  and  fully unde r s t and  Rule 18. 
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